update to 0.6.2
This commit is contained in:
@@ -130,6 +130,7 @@ def get_batch_interpolated_trajectory(
|
||||
tensor_args: TensorDeviceType = TensorDeviceType(),
|
||||
max_deviation: float = 0.1,
|
||||
min_dt: float = 0.02,
|
||||
optimize_dt: bool = True,
|
||||
):
|
||||
# compute dt across trajectory:
|
||||
b, horizon, dof = raw_traj.position.shape # horizon
|
||||
@@ -146,6 +147,7 @@ def get_batch_interpolated_trajectory(
|
||||
raw_dt,
|
||||
min_dt,
|
||||
horizon,
|
||||
optimize_dt,
|
||||
)
|
||||
# traj_steps contains the tsteps for each trajectory
|
||||
assert steps_max > 0
|
||||
@@ -208,6 +210,7 @@ def get_cpu_linear_interpolation(
|
||||
interpolation_dt=interpolation_dt,
|
||||
)
|
||||
retimed_traj[k, tstep:, :] = retimed_traj[k, tstep - 1 : tstep, :]
|
||||
|
||||
out_traj_state.position[:] = retimed_traj.to(device=raw_traj.position.device)
|
||||
return out_traj_state
|
||||
|
||||
@@ -417,7 +420,7 @@ def linear_smooth(
|
||||
y = np.linspace(0, last_step + 3, x.shape[0] + 4)
|
||||
x = np.concatenate((x, x[-1:], x[-1:], x[-1:], x[-1:]))
|
||||
elif y is None:
|
||||
step = float(last_step) / float(x.shape[0] - 1)
|
||||
step = float(last_step - 1) / float(x.shape[0] - 1)
|
||||
y = np.ravel([float(i) * step for i in range(x.shape[0])])
|
||||
# y[-1] = np.floor(y[-1])
|
||||
|
||||
@@ -506,9 +509,12 @@ def calculate_tsteps(
|
||||
raw_dt: float,
|
||||
min_dt: float,
|
||||
horizon: int,
|
||||
optimize_dt: bool = True,
|
||||
):
|
||||
# compute scaled dt:
|
||||
opt_dt = calculate_dt(vel, acc, jerk, max_vel, max_acc, max_jerk, raw_dt, interpolation_dt)
|
||||
if not optimize_dt:
|
||||
opt_dt[:] = raw_dt
|
||||
traj_steps = (torch.ceil((horizon - 1) * ((opt_dt) / interpolation_dt))).to(dtype=torch.int32)
|
||||
steps_max = torch.max(traj_steps)
|
||||
return traj_steps, steps_max, opt_dt
|
||||
|
||||
Reference in New Issue
Block a user