release repository

This commit is contained in:
Balakumar Sundaralingam
2023-10-26 04:17:19 -07:00
commit 07e6ccfc91
287 changed files with 70659 additions and 0 deletions

View File

@@ -0,0 +1,132 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import pytest
import torch
# CuRobo
from curobo.geom.types import WorldConfig
from curobo.rollout.rollout_base import Goal
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.trajopt import TrajOptSolver, TrajOptSolverConfig
def trajopt_base_config():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
trajopt_config = TrajOptSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
tensor_args,
use_cuda_graph=False,
use_fixed_samples=True,
n_collision_envs=1,
collision_cache={"obb": 10},
seed_ratio={"linear": 0.5, "start": 0.25, "goal": 0.25},
num_seeds=10,
)
return trajopt_config
def trajopt_es_config():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
trajopt_config = TrajOptSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
tensor_args,
use_cuda_graph=False,
use_es=True,
es_learning_rate=0.01,
)
return trajopt_config
def trajopt_gd_config():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
trajopt_config = TrajOptSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
tensor_args,
use_cuda_graph=False,
use_gradient_descent=True,
grad_trajopt_iters=500,
)
return trajopt_config
def trajopt_no_particle_opt_config():
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
trajopt_config = TrajOptSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
tensor_args,
use_cuda_graph=False,
use_particle_opt=False,
)
return trajopt_config
@pytest.mark.parametrize(
"config,expected",
[
(trajopt_base_config(), True),
(trajopt_es_config(), True),
(trajopt_gd_config(), True),
(trajopt_no_particle_opt_config(), True),
],
)
def test_eval(config, expected):
trajopt_solver = TrajOptSolver(config)
q_start = trajopt_solver.retract_config
q_goal = q_start.clone() + 0.1
kin_state = trajopt_solver.fk(q_goal)
goal_pose = Pose(kin_state.ee_position, kin_state.ee_quaternion)
goal_state = JointState.from_position(q_goal)
current_state = JointState.from_position(q_start)
js_goal = Goal(goal_pose=goal_pose, goal_state=goal_state, current_state=current_state)
result = trajopt_solver.solve_single(js_goal)
assert result.success.item() == expected