release repository
This commit is contained in:
114
tests/robot_assets_test.py
Normal file
114
tests/robot_assets_test.py
Normal file
@@ -0,0 +1,114 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Third Party
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
# CuRobo
|
||||
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel
|
||||
from curobo.geom.types import WorldConfig
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.math import Pose
|
||||
from curobo.types.robot import RobotConfig
|
||||
from curobo.types.state import JointState
|
||||
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
||||
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
|
||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"robot_file",
|
||||
[
|
||||
"kinova_gen3.yml",
|
||||
"iiwa.yml",
|
||||
"iiwa_allegro.yml",
|
||||
"franka.yml",
|
||||
"ur10e.yml",
|
||||
],
|
||||
)
|
||||
class TestRobots:
|
||||
def test_robot_config(self, robot_file):
|
||||
tensor_args = TensorDeviceType()
|
||||
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
|
||||
pass
|
||||
|
||||
def test_kinematics(self, robot_file):
|
||||
tensor_args = TensorDeviceType()
|
||||
|
||||
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
|
||||
robot_model = CudaRobotModel(robot_cfg.kinematics)
|
||||
robot_cfg.cspace.inplace_reindex(robot_model.joint_names)
|
||||
robot_model.get_state(robot_cfg.cspace.retract_config)
|
||||
pass
|
||||
|
||||
def test_ik(self, robot_file):
|
||||
world_file = "collision_table.yml"
|
||||
tensor_args = TensorDeviceType()
|
||||
|
||||
robot_cfg = RobotConfig.from_dict(
|
||||
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
)
|
||||
world_cfg = WorldConfig.from_dict(
|
||||
load_yaml(join_path(get_world_configs_path(), world_file))
|
||||
)
|
||||
ik_config = IKSolverConfig.load_from_robot_config(
|
||||
robot_cfg,
|
||||
world_cfg,
|
||||
rotation_threshold=0.05,
|
||||
position_threshold=0.005,
|
||||
num_seeds=50,
|
||||
self_collision_check=True,
|
||||
self_collision_opt=True,
|
||||
tensor_args=tensor_args,
|
||||
)
|
||||
ik_solver = IKSolver(ik_config)
|
||||
b_size = 10
|
||||
q_sample = ik_solver.sample_configs(b_size)
|
||||
kin_state = ik_solver.fk(q_sample)
|
||||
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
|
||||
result = ik_solver.solve(goal)
|
||||
result = ik_solver.solve(goal)
|
||||
|
||||
success = result.success
|
||||
assert torch.count_nonzero(success).item() >= 9.0 # we check if atleast 90% are successful
|
||||
|
||||
def notest_motion_gen(self, robot_file):
|
||||
"""This test causes pytest to crash when running on many robot configurations
|
||||
|
||||
Args:
|
||||
robot_file: _description_
|
||||
"""
|
||||
tensor_args = TensorDeviceType()
|
||||
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_file,
|
||||
"collision_table.yml",
|
||||
tensor_args,
|
||||
trajopt_tsteps=40,
|
||||
use_cuda_graph=True,
|
||||
)
|
||||
motion_gen = MotionGen(motion_gen_config)
|
||||
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
|
||||
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
state = motion_gen.rollout_fn.compute_kinematics(
|
||||
JointState.from_position(retract_cfg.view(1, -1))
|
||||
)
|
||||
|
||||
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1))
|
||||
start_state.position[0, -1] += 0.2
|
||||
result = motion_gen.plan(start_state, retract_pose, enable_graph=False)
|
||||
assert result.success.item()
|
||||
Reference in New Issue
Block a user