release repository
This commit is contained in:
66
tests/pose_test.py
Normal file
66
tests/pose_test.py
Normal file
@@ -0,0 +1,66 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Third Party
|
||||
import torch
|
||||
|
||||
# CuRobo
|
||||
from curobo.geom.transform import batch_transform_points, transform_points
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.math import Pose
|
||||
|
||||
|
||||
def test_pose_transform_point():
|
||||
tensor_args = TensorDeviceType()
|
||||
new_pose = Pose.from_list([0, 0, 0, 1, 0, 0, 0], tensor_args)
|
||||
|
||||
new_pose.position.requires_grad = True
|
||||
new_pose.quaternion.requires_grad = True
|
||||
|
||||
points = torch.zeros((3, 3), device=tensor_args.device, dtype=tensor_args.dtype)
|
||||
points[:, 0] = 0.1
|
||||
points[2, 0] = -0.5
|
||||
|
||||
out_pt = new_pose.transform_point(points)
|
||||
|
||||
loss = torch.sum(out_pt)
|
||||
loss.backward()
|
||||
assert torch.norm(new_pose.position.grad) > 0.0
|
||||
assert torch.norm(new_pose.quaternion.grad) > 0.0
|
||||
|
||||
|
||||
def test_pose_transform_point_grad():
|
||||
tensor_args = TensorDeviceType()
|
||||
new_pose = Pose.from_list([10.0, 0, 0.1, 1.0, 0, 0, 0], tensor_args)
|
||||
new_pose.position.requires_grad = True
|
||||
new_pose.quaternion.requires_grad = True
|
||||
|
||||
points = torch.zeros((1, 1, 3), device=tensor_args.device, dtype=tensor_args.dtype) + 10.0
|
||||
|
||||
# buffers:
|
||||
out_points = torch.zeros(
|
||||
(points.shape[0], points.shape[1], 3), device=points.device, dtype=points.dtype
|
||||
)
|
||||
out_gp = torch.zeros((new_pose.position.shape[0], 3), device=tensor_args.device)
|
||||
out_gq = torch.zeros((new_pose.position.shape[0], 4), device=tensor_args.device)
|
||||
out_gpt = torch.zeros((points.shape[0], points.shape[1], 3), device=tensor_args.device)
|
||||
|
||||
torch.autograd.gradcheck(
|
||||
batch_transform_points,
|
||||
(new_pose.position, new_pose.quaternion, points, out_points, out_gp, out_gq, out_gpt),
|
||||
eps=1e-6,
|
||||
atol=1.0,
|
||||
# nondet_tol=100.0,
|
||||
)
|
||||
|
||||
|
||||
# test_pose_transform_point()
|
||||
# test_pose_transform_point_grad()
|
||||
Reference in New Issue
Block a user