release repository
This commit is contained in:
284
tests/motion_gen_module_test.py
Normal file
284
tests/motion_gen_module_test.py
Normal file
@@ -0,0 +1,284 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Third Party
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
# CuRobo
|
||||
from curobo.geom.types import WorldConfig
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.math import Pose
|
||||
from curobo.types.robot import JointState, RobotConfig
|
||||
from curobo.util.trajectory import InterpolateType
|
||||
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
|
||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def motion_gen():
|
||||
tensor_args = TensorDeviceType()
|
||||
world_file = "collision_table.yml"
|
||||
robot_file = "franka.yml"
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_file,
|
||||
world_file,
|
||||
tensor_args,
|
||||
trajopt_tsteps=32,
|
||||
use_cuda_graph=False,
|
||||
num_trajopt_seeds=50,
|
||||
fixed_iters_trajopt=True,
|
||||
evaluate_interpolated_trajectory=True,
|
||||
)
|
||||
motion_gen_instance = MotionGen(motion_gen_config)
|
||||
return motion_gen_instance
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def motion_gen_batch_env():
|
||||
tensor_args = TensorDeviceType()
|
||||
world_files = ["collision_table.yml", "collision_test.yml"]
|
||||
world_cfg = [
|
||||
WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
|
||||
for world_file in world_files
|
||||
]
|
||||
robot_file = "franka.yml"
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_file,
|
||||
world_cfg,
|
||||
tensor_args,
|
||||
trajopt_tsteps=32,
|
||||
use_cuda_graph=False,
|
||||
num_trajopt_seeds=10,
|
||||
fixed_iters_trajopt=True,
|
||||
evaluate_interpolated_trajectory=True,
|
||||
)
|
||||
motion_gen_instance = MotionGen(motion_gen_config)
|
||||
|
||||
return motion_gen_instance
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"motion_gen_str,interpolation",
|
||||
[
|
||||
("motion_gen", InterpolateType.LINEAR),
|
||||
("motion_gen", InterpolateType.CUBIC),
|
||||
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
|
||||
("motion_gen", InterpolateType.LINEAR_CUDA),
|
||||
],
|
||||
)
|
||||
def test_motion_gen_single(motion_gen_str, interpolation, request):
|
||||
motion_gen = request.getfixturevalue(motion_gen_str)
|
||||
motion_gen.update_interpolation_type(interpolation)
|
||||
motion_gen.reset()
|
||||
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(state.ee_pos_seq, quaternion=state.ee_quat_seq)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen.plan_single(start_state, goal_pose, m_config)
|
||||
|
||||
# get final solutions:
|
||||
assert torch.count_nonzero(result.success) == 1
|
||||
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
|
||||
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
||||
|
||||
|
||||
def test_motion_gen_goalset(motion_gen):
|
||||
motion_gen.reset()
|
||||
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.repeat(2, 1).view(1, -1, 3),
|
||||
quaternion=state.ee_quat_seq.repeat(2, 1).view(1, -1, 4),
|
||||
)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen.plan_goalset(start_state, goal_pose, m_config)
|
||||
|
||||
# get final solutions:
|
||||
assert torch.count_nonzero(result.success) == 1
|
||||
|
||||
reached_state = motion_gen.compute_kinematics(result.optimized_plan[-1])
|
||||
|
||||
assert (
|
||||
torch.min(
|
||||
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
|
||||
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
|
||||
)
|
||||
< 0.005
|
||||
)
|
||||
|
||||
|
||||
def test_motion_gen_batch_goalset(motion_gen):
|
||||
motion_gen.reset()
|
||||
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.repeat(4, 1).view(2, -1, 3),
|
||||
quaternion=state.ee_quat_seq.repeat(4, 1).view(2, -1, 4),
|
||||
)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen.plan_batch_goalset(start_state, goal_pose, m_config)
|
||||
|
||||
# get final solutions:
|
||||
assert torch.count_nonzero(result.success) > 0
|
||||
|
||||
reached_state = motion_gen.compute_kinematics(result.optimized_plan.trim_trajectory(-1))
|
||||
|
||||
assert (
|
||||
torch.min(
|
||||
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
|
||||
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
|
||||
)
|
||||
< 0.005
|
||||
)
|
||||
|
||||
|
||||
def test_motion_gen_batch(motion_gen):
|
||||
motion_gen.reset()
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
||||
).repeat_seeds(2)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
||||
|
||||
goal_pose.position[1, 0] -= 0.2
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen.plan_batch(start_state, goal_pose.clone(), m_config)
|
||||
assert torch.count_nonzero(result.success) > 0
|
||||
|
||||
# get final solutions:
|
||||
q = result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
||||
reached_state = motion_gen.compute_kinematics(q)
|
||||
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"motion_gen_str,interpolation",
|
||||
[
|
||||
("motion_gen", InterpolateType.LINEAR),
|
||||
("motion_gen", InterpolateType.CUBIC),
|
||||
# ("motion_gen", InterpolateType.KUNZ_STILMAN_OPTIMAL),
|
||||
("motion_gen", InterpolateType.LINEAR_CUDA),
|
||||
],
|
||||
)
|
||||
def test_motion_gen_batch_graph(motion_gen_str: str, interpolation: InterpolateType, request):
|
||||
# return
|
||||
motion_gen = request.getfixturevalue(motion_gen_str)
|
||||
|
||||
motion_gen.graph_planner.interpolation_type = interpolation
|
||||
motion_gen.reset()
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
state = motion_gen.compute_kinematics(JointState.from_position(retract_cfg.view(1, -1)))
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
||||
).repeat_seeds(5)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(5)
|
||||
|
||||
goal_pose.position[1, 0] -= 0.05
|
||||
|
||||
m_config = MotionGenPlanConfig(True, False)
|
||||
|
||||
result = motion_gen.plan_batch(start_state, goal_pose, m_config)
|
||||
assert torch.count_nonzero(result.success) > 0
|
||||
|
||||
# get final solutions:
|
||||
q = result.interpolated_plan.trim_trajectory(-1).squeeze(1)
|
||||
reached_state = motion_gen.compute_kinematics(q)
|
||||
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
||||
|
||||
|
||||
def test_motion_gen_batch_env(motion_gen_batch_env):
|
||||
motion_gen_batch_env.reset()
|
||||
retract_cfg = motion_gen_batch_env.get_retract_config()
|
||||
state = motion_gen_batch_env.compute_kinematics(
|
||||
JointState.from_position(retract_cfg.view(1, -1))
|
||||
)
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze()
|
||||
).repeat_seeds(2)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
||||
|
||||
goal_pose.position[1, 0] -= 0.2
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen_batch_env.plan_batch_env(start_state, goal_pose, m_config)
|
||||
assert torch.count_nonzero(result.success) > 0
|
||||
|
||||
# get final solutions:
|
||||
reached_state = motion_gen_batch_env.compute_kinematics(
|
||||
result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
||||
)
|
||||
assert torch.norm(goal_pose.position - reached_state.ee_pos_seq) < 0.005
|
||||
|
||||
|
||||
def test_motion_gen_batch_env_goalset(motion_gen_batch_env):
|
||||
motion_gen_batch_env.reset()
|
||||
retract_cfg = motion_gen_batch_env.get_retract_config()
|
||||
state = motion_gen_batch_env.compute_kinematics(
|
||||
JointState.from_position(retract_cfg.view(1, -1))
|
||||
)
|
||||
|
||||
goal_pose = Pose(
|
||||
state.ee_pos_seq.repeat(4, 1).view(2, -1, 3),
|
||||
quaternion=state.ee_quat_seq.repeat(4, 1).view(2, -1, 4),
|
||||
)
|
||||
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3).repeat_seeds(2)
|
||||
|
||||
goal_pose.position[1, 0] -= 0.2
|
||||
|
||||
m_config = MotionGenPlanConfig(False, True, num_trajopt_seeds=10)
|
||||
|
||||
result = motion_gen_batch_env.plan_batch_env_goalset(start_state, goal_pose, m_config)
|
||||
assert torch.count_nonzero(result.success) > 0
|
||||
|
||||
# get final solutions:
|
||||
reached_state = motion_gen_batch_env.compute_kinematics(
|
||||
result.optimized_plan.trim_trajectory(-1).squeeze(1)
|
||||
)
|
||||
assert (
|
||||
torch.min(
|
||||
torch.norm(goal_pose.position[:, 0, :] - reached_state.ee_pos_seq),
|
||||
torch.norm(goal_pose.position[:, 1, :] - reached_state.ee_pos_seq),
|
||||
)
|
||||
< 0.005
|
||||
)
|
||||
Reference in New Issue
Block a user