release repository

This commit is contained in:
Balakumar Sundaralingam
2023-10-26 04:17:19 -07:00
commit 07e6ccfc91
287 changed files with 70659 additions and 0 deletions

211
tests/ik_test.py Normal file
View File

@@ -0,0 +1,211 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import torch
# CuRobo
from curobo.geom.sdf.world import (
CollisionCheckerType,
WorldCollisionConfig,
WorldPrimitiveCollision,
)
from curobo.geom.sdf.world_mesh import WorldMeshCollision
from curobo.geom.types import WorldConfig
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import RobotConfig
from curobo.util_file import get_robot_configs_path, get_world_configs_path, join_path, load_yaml
from curobo.wrap.reacher.ik_solver import IKSolver, IKSolverConfig
def test_basic_ik():
tensor_args = TensorDeviceType()
config_file = load_yaml(join_path(get_robot_configs_path(), "franka.yml"))
urdf_file = config_file["robot_cfg"]["kinematics"][
"urdf_path"
] # Send global path starting with "/"
base_link = config_file["robot_cfg"]["kinematics"]["base_link"]
ee_link = config_file["robot_cfg"]["kinematics"]["ee_link"]
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
None,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=30,
self_collision_check=False,
self_collision_opt=False,
tensor_args=tensor_args,
)
ik_solver = IKSolver(ik_config)
b_size = 10
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve_batch(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 1.0 # we check if atleast 1 is successful
def test_full_config_collision_free_ik():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=30,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
)
ik_solver = IKSolver(ik_config)
b_size = 10
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 9.0 # we check if atleast 90% are successful
def test_attach_object_full_config_collision_free_ik():
tensor_args = TensorDeviceType()
world_file = "collision_cubby.yml"
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
world_cfg = WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_cfg,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=30,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
)
ik_solver = IKSolver(ik_config)
b_size = 10
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 9.0 # we check if atleast 90% are successful
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
# ik_solver.attach_object_to_robot(sphere_radius=0.02)
result = ik_solver.solve(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 9.0 # we check if atleast 90% are successful
def test_batch_env_ik():
tensor_args = TensorDeviceType()
world_files = ["collision_cubby.yml", "collision_test.yml"]
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
w_list = [
WorldConfig.from_dict(load_yaml(join_path(get_world_configs_path(), world_file)))
for world_file in world_files
]
world_ccheck = WorldPrimitiveCollision(WorldCollisionConfig(tensor_args, n_envs=2))
# create a batched world collision checker:
world_ccheck.load_batch_collision_model(w_list)
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_coll_checker=world_ccheck,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=True,
)
ik_solver = IKSolver(ik_config)
b_size = 2
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve_batch_env(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 1.0 # we check if atleast 90% are successful
def test_batch_env_mesh_ik():
tensor_args = TensorDeviceType()
world_files = ["collision_table.yml", "collision_table.yml"]
robot_file = "franka.yml"
robot_cfg = RobotConfig.from_dict(
load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
)
w_list = [
WorldConfig.from_dict(
load_yaml(join_path(get_world_configs_path(), world_file))
).get_mesh_world()
for world_file in world_files
]
world_ccheck = WorldMeshCollision(
WorldCollisionConfig(tensor_args, checker_type=CollisionCheckerType.MESH, n_envs=2)
)
# create a batched world collision checker:
# print(w_list)
world_ccheck.load_batch_collision_model(w_list)
ik_config = IKSolverConfig.load_from_robot_config(
robot_cfg,
world_coll_checker=world_ccheck,
rotation_threshold=0.05,
position_threshold=0.005,
num_seeds=100,
self_collision_check=True,
self_collision_opt=True,
tensor_args=tensor_args,
use_cuda_graph=True,
)
ik_solver = IKSolver(ik_config)
b_size = 2
q_sample = ik_solver.sample_configs(b_size)
kin_state = ik_solver.fk(q_sample)
goal = Pose(kin_state.ee_position, kin_state.ee_quaternion)
result = ik_solver.solve_batch_env(goal)
success = result.success
assert torch.count_nonzero(success).item() >= 1.0 # we check if atleast 90% are successful