release repository

This commit is contained in:
Balakumar Sundaralingam
2023-10-26 04:17:19 -07:00
commit 07e6ccfc91
287 changed files with 70659 additions and 0 deletions

View File

@@ -0,0 +1,405 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Third Party
import torch
# CuRobo
from curobo.util.logger import log_warn
try:
# CuRobo
from curobo.curobolib import geom_cu
except ImportError:
log_warn("geom_cu binary not found, jit compiling...")
# Third Party
from torch.utils.cpp_extension import load
# CuRobo
from curobo.util_file import add_cpp_path
geom_cu = load(
name="geom_cu",
sources=add_cpp_path(
[
"geom_cuda.cpp",
"sphere_obb_kernel.cu",
"pose_distance_kernel.cu",
"self_collision_kernel.cu",
]
),
)
def get_self_collision_distance(
out_distance,
out_vec,
sparse_index,
robot_spheres,
collision_offset,
weight,
coll_matrix,
thread_locations,
thread_size,
b_size,
nspheres,
compute_grad,
checks_per_thread=32,
experimental_kernel=True,
):
r = geom_cu.self_collision_distance(
out_distance,
out_vec,
sparse_index,
robot_spheres,
collision_offset,
weight,
coll_matrix,
thread_locations,
thread_size,
b_size,
nspheres,
compute_grad,
checks_per_thread,
experimental_kernel,
)
out_distance = r[0]
out_vec = r[1]
return out_distance, out_vec
class SelfCollisionDistance(torch.autograd.Function):
@staticmethod
def forward(
ctx,
out_distance,
out_vec,
sparse_idx,
robot_spheres,
sphere_offset,
weight,
coll_matrix,
thread_locations,
max_thread,
checks_per_thread: int,
experimental_kernel: bool,
return_loss: bool = False,
):
# get batch size
b, h, n_spheres, _ = robot_spheres.shape
out_distance, out_vec = get_self_collision_distance(
out_distance,
out_vec,
sparse_idx,
robot_spheres, # .view(-1, 4),
sphere_offset,
weight,
coll_matrix,
thread_locations,
max_thread,
b * h,
n_spheres,
robot_spheres.requires_grad,
checks_per_thread,
experimental_kernel,
)
ctx.return_loss = return_loss
ctx.save_for_backward(out_vec)
return out_distance
@staticmethod
def backward(ctx, grad_out_distance):
sphere_grad = None
if ctx.needs_input_grad[3]:
(g_vec,) = ctx.saved_tensors
if ctx.return_loss:
g_vec = g_vec * grad_out_distance.unsqueeze(1)
sphere_grad = g_vec
return None, None, None, sphere_grad, None, None, None, None, None, None, None, None
class SelfCollisionDistanceLoss(SelfCollisionDistance):
@staticmethod
def backward(ctx, grad_out_distance):
sphere_grad = None
if ctx.needs_input_grad[3]:
(g_vec,) = ctx.saved_tensors
sphere_grad = g_vec * grad_out_distance.unsqueeze(1)
return None, None, None, sphere_grad, None, None, None, None, None, None, None
def get_pose_distance(
out_distance,
out_position_distance,
out_rotation_distance,
out_p_vec,
out_q_vec,
out_idx,
current_position,
goal_position,
current_quat,
goal_quat,
vec_weight,
weight,
vec_convergence,
run_weight,
run_vec_weight,
batch_pose_idx,
batch_size,
horizon,
mode=1,
num_goals=1,
write_grad=False,
write_distance=False,
use_metric=False,
):
if batch_pose_idx.shape[0] != batch_size:
raise ValueError("Index buffer size is different from batch size")
r = geom_cu.pose_distance(
out_distance,
out_position_distance,
out_rotation_distance,
out_p_vec,
out_q_vec,
out_idx,
current_position,
goal_position.view(-1),
current_quat,
goal_quat.view(-1),
vec_weight,
weight,
vec_convergence,
run_weight,
run_vec_weight,
batch_pose_idx,
batch_size,
horizon,
mode,
num_goals,
write_grad,
write_distance,
use_metric,
)
out_distance = r[0]
out_position_distance = r[1]
out_rotation_distance = r[2]
out_p_vec = r[3]
out_q_vec = r[4]
out_idx = r[5]
return out_distance, out_position_distance, out_rotation_distance, out_p_vec, out_q_vec, out_idx
def get_pose_distance_backward(
out_grad_p,
out_grad_q,
grad_distance,
grad_p_distance,
grad_q_distance,
pose_weight,
grad_p_vec,
grad_q_vec,
batch_size,
use_distance=False,
):
r = geom_cu.pose_distance_backward(
out_grad_p,
out_grad_q,
grad_distance,
grad_p_distance,
grad_q_distance,
pose_weight,
grad_p_vec,
grad_q_vec,
batch_size,
use_distance,
)
return r[0], r[1]
class SdfSphereOBB(torch.autograd.Function):
@staticmethod
def forward(
ctx,
query_sphere,
out_buffer,
grad_out_buffer,
sparsity_idx,
weight,
activation_distance,
box_accel,
box_dims,
box_pose,
box_enable,
n_env_obb,
env_query_idx,
max_nobs,
batch_size,
horizon,
n_spheres,
transform_back,
compute_distance,
use_batch_env,
return_loss: bool = False,
):
r = geom_cu.closest_point(
query_sphere,
out_buffer,
grad_out_buffer,
sparsity_idx,
weight,
activation_distance,
box_accel,
box_dims,
box_pose,
box_enable,
n_env_obb,
env_query_idx,
max_nobs,
batch_size,
horizon,
n_spheres,
transform_back,
compute_distance,
use_batch_env,
)
# r[1][r[1]!=r[1]] = 0.0
ctx.return_loss = return_loss
ctx.save_for_backward(r[1])
return r[0]
@staticmethod
def backward(ctx, grad_output):
grad_pt = None
if ctx.needs_input_grad[0]:
(r,) = ctx.saved_tensors
if ctx.return_loss:
r = r * grad_output.unsqueeze(-1)
grad_pt = r
return (
grad_pt,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)
class SdfSweptSphereOBB(torch.autograd.Function):
@staticmethod
def forward(
ctx,
query_sphere,
out_buffer,
grad_out_buffer,
sparsity_idx,
weight,
activation_distance,
speed_dt,
box_accel,
box_dims,
box_pose,
box_enable,
n_env_obb,
env_query_idx,
max_nobs,
batch_size,
horizon,
n_spheres,
sweep_steps,
enable_speed_metric,
transform_back,
compute_distance,
use_batch_env,
return_loss: bool = False,
):
r = geom_cu.swept_closest_point(
query_sphere,
out_buffer,
grad_out_buffer,
sparsity_idx,
weight,
activation_distance,
speed_dt,
box_accel,
box_dims,
box_pose,
box_enable,
n_env_obb,
env_query_idx,
max_nobs,
batch_size,
horizon,
n_spheres,
sweep_steps,
enable_speed_metric,
transform_back,
compute_distance,
use_batch_env,
)
ctx.return_loss = return_loss
ctx.save_for_backward(
r[1],
)
return r[0]
@staticmethod
def backward(ctx, grad_output):
grad_pt = None
if ctx.needs_input_grad[0]:
(r,) = ctx.saved_tensors
if ctx.return_loss:
r = r * grad_output.unsqueeze(-1)
grad_pt = r
return (
grad_pt,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)