release repository
This commit is contained in:
180
benchmark/curobo_python_profile.py
Normal file
180
benchmark/curobo_python_profile.py
Normal file
@@ -0,0 +1,180 @@
|
||||
#
|
||||
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
||||
# property and proprietary rights in and to this material, related
|
||||
# documentation and any modifications thereto. Any use, reproduction,
|
||||
# disclosure or distribution of this material and related documentation
|
||||
# without an express license agreement from NVIDIA CORPORATION or
|
||||
# its affiliates is strictly prohibited.
|
||||
#
|
||||
|
||||
# Standard Library
|
||||
import argparse
|
||||
import cProfile
|
||||
import time
|
||||
|
||||
# Third Party
|
||||
import torch
|
||||
from torch.profiler import ProfilerActivity, profile, record_function
|
||||
|
||||
# CuRobo
|
||||
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel, CudaRobotModelConfig
|
||||
from curobo.geom.sdf.world import CollisionCheckerType
|
||||
from curobo.types.base import TensorDeviceType
|
||||
from curobo.types.math import Pose
|
||||
from curobo.types.robot import JointState, RobotConfig
|
||||
from curobo.util_file import get_robot_configs_path, get_robot_path, join_path, load_yaml
|
||||
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
|
||||
|
||||
|
||||
def demo_motion_gen():
|
||||
# Standard Library
|
||||
|
||||
st_time = time.time()
|
||||
tensor_args = TensorDeviceType()
|
||||
world_file = "collision_table.yml"
|
||||
robot_file = "franka.yml"
|
||||
motion_gen_config = MotionGenConfig.load_from_robot_config(
|
||||
robot_file,
|
||||
world_file,
|
||||
tensor_args,
|
||||
trajopt_tsteps=32,
|
||||
collision_checker_type=CollisionCheckerType.PRIMITIVE,
|
||||
use_cuda_graph=False,
|
||||
num_trajopt_seeds=4,
|
||||
num_graph_seeds=1,
|
||||
evaluate_interpolated_trajectory=True,
|
||||
interpolation_dt=0.01,
|
||||
)
|
||||
motion_gen = MotionGen(motion_gen_config)
|
||||
|
||||
# st_time = time.time()
|
||||
motion_gen.warmup(batch=50, enable_graph=False, warmup_js_trajopt=False)
|
||||
print("motion gen time:", time.time() - st_time)
|
||||
|
||||
# print(time.time() - st_time)
|
||||
return
|
||||
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
|
||||
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
|
||||
retract_cfg = motion_gen.get_retract_config()
|
||||
print(retract_cfg)
|
||||
state = motion_gen.rollout_fn.compute_kinematics(
|
||||
JointState.from_position(retract_cfg.view(1, -1))
|
||||
)
|
||||
|
||||
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
|
||||
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
|
||||
result = motion_gen.plan(
|
||||
start_state, retract_pose, enable_graph=True, enable_opt=False, max_attempts=1
|
||||
)
|
||||
print(result.optimized_plan.position.shape)
|
||||
traj = result.get_interpolated_plan() # $.position.view(-1, 7) # optimized plan
|
||||
print("Trajectory Generated: ", result.success, result.optimized_dt.item())
|
||||
|
||||
|
||||
def demo_basic_robot():
|
||||
st_time = time.time()
|
||||
tensor_args = TensorDeviceType()
|
||||
# load a urdf:
|
||||
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))
|
||||
|
||||
urdf_file = config_file["robot_cfg"]["kinematics"][
|
||||
"urdf_path"
|
||||
] # Send global path starting with "/"
|
||||
base_link = config_file["robot_cfg"]["kinematics"]["base_link"]
|
||||
ee_link = config_file["robot_cfg"]["kinematics"]["ee_link"]
|
||||
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
|
||||
|
||||
kin_model = CudaRobotModel(robot_cfg.kinematics)
|
||||
print("base kin time:", time.time() - st_time)
|
||||
return
|
||||
# compute forward kinematics:
|
||||
|
||||
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
|
||||
# out = kin_model.get_state(q)
|
||||
# here is the kinematics state:
|
||||
# print(out)
|
||||
|
||||
|
||||
def demo_full_config_robot(config_file):
|
||||
st_time = time.time()
|
||||
tensor_args = TensorDeviceType()
|
||||
# load a urdf:
|
||||
|
||||
robot_cfg = RobotConfig.from_dict(config_file, tensor_args)
|
||||
|
||||
# kin_model = CudaRobotModel(robot_cfg.kinematics)
|
||||
print("full kin time: ", time.time() - st_time)
|
||||
# compute forward kinematics:
|
||||
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
|
||||
# out = kin_model.get_state(q)
|
||||
# here is the kinematics state:
|
||||
# print(out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--save_path",
|
||||
type=str,
|
||||
default="log/trace",
|
||||
help="path to save file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--file_name",
|
||||
type=str,
|
||||
default="startup_trace",
|
||||
help="File name prefix to use to save benchmark results",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--motion_gen",
|
||||
action="store_true",
|
||||
help="When True, runs startup for motion generation",
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kinematics",
|
||||
action="store_true",
|
||||
help="When True, runs startup for kinematics",
|
||||
default=True,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# cProfile.run('demo_motion_gen()')
|
||||
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))["robot_cfg"]
|
||||
|
||||
# Third Party
|
||||
|
||||
if args.kinematics:
|
||||
for _ in range(5):
|
||||
demo_full_config_robot(config_file)
|
||||
|
||||
pr = cProfile.Profile()
|
||||
pr.enable()
|
||||
demo_full_config_robot(config_file)
|
||||
pr.disable()
|
||||
filename = join_path(args.save_path, args.file_name) + "_kinematics_cprofile.prof"
|
||||
pr.dump_stats(filename)
|
||||
|
||||
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
|
||||
demo_full_config_robot(config_file)
|
||||
filename = join_path(args.save_path, args.file_name) + "_kinematics_trace.json"
|
||||
prof.export_chrome_trace(filename)
|
||||
|
||||
if args.motion_gen:
|
||||
for _ in range(5):
|
||||
demo_motion_gen()
|
||||
|
||||
pr = cProfile.Profile()
|
||||
pr.enable()
|
||||
demo_motion_gen()
|
||||
pr.disable()
|
||||
filename = join_path(args.save_path, args.file_name) + "_motion_gen_cprofile.prof"
|
||||
pr.dump_stats(filename)
|
||||
|
||||
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
|
||||
demo_motion_gen()
|
||||
filename = join_path(args.save_path, args.file_name) + "_motion_gen_trace.json"
|
||||
prof.export_chrome_trace(filename)
|
||||
Reference in New Issue
Block a user