release repository

This commit is contained in:
Balakumar Sundaralingam
2023-10-26 04:17:19 -07:00
commit 07e6ccfc91
287 changed files with 70659 additions and 0 deletions

View File

@@ -0,0 +1,180 @@
#
# Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Standard Library
import argparse
import cProfile
import time
# Third Party
import torch
from torch.profiler import ProfilerActivity, profile, record_function
# CuRobo
from curobo.cuda_robot_model.cuda_robot_model import CudaRobotModel, CudaRobotModelConfig
from curobo.geom.sdf.world import CollisionCheckerType
from curobo.types.base import TensorDeviceType
from curobo.types.math import Pose
from curobo.types.robot import JointState, RobotConfig
from curobo.util_file import get_robot_configs_path, get_robot_path, join_path, load_yaml
from curobo.wrap.reacher.motion_gen import MotionGen, MotionGenConfig, MotionGenPlanConfig
def demo_motion_gen():
# Standard Library
st_time = time.time()
tensor_args = TensorDeviceType()
world_file = "collision_table.yml"
robot_file = "franka.yml"
motion_gen_config = MotionGenConfig.load_from_robot_config(
robot_file,
world_file,
tensor_args,
trajopt_tsteps=32,
collision_checker_type=CollisionCheckerType.PRIMITIVE,
use_cuda_graph=False,
num_trajopt_seeds=4,
num_graph_seeds=1,
evaluate_interpolated_trajectory=True,
interpolation_dt=0.01,
)
motion_gen = MotionGen(motion_gen_config)
# st_time = time.time()
motion_gen.warmup(batch=50, enable_graph=False, warmup_js_trajopt=False)
print("motion gen time:", time.time() - st_time)
# print(time.time() - st_time)
return
robot_cfg = load_yaml(join_path(get_robot_configs_path(), robot_file))["robot_cfg"]
robot_cfg = RobotConfig.from_dict(robot_cfg, tensor_args)
retract_cfg = motion_gen.get_retract_config()
print(retract_cfg)
state = motion_gen.rollout_fn.compute_kinematics(
JointState.from_position(retract_cfg.view(1, -1))
)
retract_pose = Pose(state.ee_pos_seq.squeeze(), quaternion=state.ee_quat_seq.squeeze())
start_state = JointState.from_position(retract_cfg.view(1, -1) + 0.3)
result = motion_gen.plan(
start_state, retract_pose, enable_graph=True, enable_opt=False, max_attempts=1
)
print(result.optimized_plan.position.shape)
traj = result.get_interpolated_plan() # $.position.view(-1, 7) # optimized plan
print("Trajectory Generated: ", result.success, result.optimized_dt.item())
def demo_basic_robot():
st_time = time.time()
tensor_args = TensorDeviceType()
# load a urdf:
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))
urdf_file = config_file["robot_cfg"]["kinematics"][
"urdf_path"
] # Send global path starting with "/"
base_link = config_file["robot_cfg"]["kinematics"]["base_link"]
ee_link = config_file["robot_cfg"]["kinematics"]["ee_link"]
robot_cfg = RobotConfig.from_basic(urdf_file, base_link, ee_link, tensor_args)
kin_model = CudaRobotModel(robot_cfg.kinematics)
print("base kin time:", time.time() - st_time)
return
# compute forward kinematics:
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
# out = kin_model.get_state(q)
# here is the kinematics state:
# print(out)
def demo_full_config_robot(config_file):
st_time = time.time()
tensor_args = TensorDeviceType()
# load a urdf:
robot_cfg = RobotConfig.from_dict(config_file, tensor_args)
# kin_model = CudaRobotModel(robot_cfg.kinematics)
print("full kin time: ", time.time() - st_time)
# compute forward kinematics:
# q = torch.rand((10, kin_model.get_dof()), **vars(tensor_args))
# out = kin_model.get_state(q)
# here is the kinematics state:
# print(out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_path",
type=str,
default="log/trace",
help="path to save file",
)
parser.add_argument(
"--file_name",
type=str,
default="startup_trace",
help="File name prefix to use to save benchmark results",
)
parser.add_argument(
"--motion_gen",
action="store_true",
help="When True, runs startup for motion generation",
default=False,
)
parser.add_argument(
"--kinematics",
action="store_true",
help="When True, runs startup for kinematics",
default=True,
)
args = parser.parse_args()
# cProfile.run('demo_motion_gen()')
config_file = load_yaml(join_path(get_robot_path(), "franka.yml"))["robot_cfg"]
# Third Party
if args.kinematics:
for _ in range(5):
demo_full_config_robot(config_file)
pr = cProfile.Profile()
pr.enable()
demo_full_config_robot(config_file)
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_kinematics_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_full_config_robot(config_file)
filename = join_path(args.save_path, args.file_name) + "_kinematics_trace.json"
prof.export_chrome_trace(filename)
if args.motion_gen:
for _ in range(5):
demo_motion_gen()
pr = cProfile.Profile()
pr.enable()
demo_motion_gen()
pr.disable()
filename = join_path(args.save_path, args.file_name) + "_motion_gen_cprofile.prof"
pr.dump_stats(filename)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
demo_motion_gen()
filename = join_path(args.save_path, args.file_name) + "_motion_gen_trace.json"
prof.export_chrome_trace(filename)