146 lines
6.7 KiB
Python
146 lines
6.7 KiB
Python
import os
|
|
import numpy as np
|
|
from scipy.spatial.transform import Rotation as R
|
|
from data_gen_dependencies.action.base import StageTemplate
|
|
|
|
|
|
class PushRevoluteStage(StageTemplate):
|
|
DELTA_DISTANCE = 0.003 # meter
|
|
def __init__(self, active_obj_id, passive_obj_id, active_element=None, passive_element=None, target_pose=np.eye(4), extra_params=None, objects=[], **kwargs):
|
|
super().__init__(active_obj_id, passive_obj_id, active_element, passive_element)
|
|
#import ipdb;ipdb.set_trace()
|
|
self.objects = objects
|
|
self.passive_obj = objects[passive_obj_id]
|
|
self.active_obj = objects[active_obj_id]
|
|
main_part_name= passive_element["part_id"]
|
|
self.obj_base = os.path.dirname(passive_obj_id)
|
|
main_part_id = os.path.join(self.obj_base, main_part_name)
|
|
if main_part_id not in objects:
|
|
raise ValueError(f"Cannot find main part {main_part_name} in objects")
|
|
self.root_id = os.path.join(self.obj_base, "root")
|
|
self.main_part_obj = objects[main_part_id]
|
|
self.root_obj = objects[self.root_id]
|
|
self.revolute_radius = np.linalg.norm(self.passive_obj.obj_pose[:3,3] - self.main_part_obj.obj_pose[:3,3])
|
|
self.revolute_joint_position = self.main_part_obj.obj_pose[:3,3]
|
|
self.joint_position_threshold = passive_element.get('joint_position_threshold', 0.7)
|
|
self.correspond_joint_id = passive_element.get('correspond_joint_id', None)
|
|
correspond_joint_info = self.passive_obj.joints_info[self.correspond_joint_id]
|
|
|
|
self.joint_lower_limit = correspond_joint_info["lower_bound"]
|
|
self.joint_upper_limit = correspond_joint_info["upper_bound"]
|
|
self.joint_axis = correspond_joint_info["joint_axis"]
|
|
self.joint_type = correspond_joint_info["joint_type"]
|
|
assert self.joint_type == 'revolute', "joint_type must be revolute for push_revolute action"
|
|
if self.joint_position_threshold is None:
|
|
self.joint_position_threshold = 0.7
|
|
assert self.joint_position_threshold >= 0 and self.joint_position_threshold <= 1
|
|
|
|
self.joint_direction = passive_element.get('joint_direction', 1)
|
|
assert self.joint_direction in [-1, 1]
|
|
|
|
self.joint_velocity_threshold = passive_element.get('joint_velocity_threshold', 999)
|
|
vector_direction = passive_element['direction']
|
|
|
|
self.extra_params = {} if extra_params is None else extra_params
|
|
self.generate_substage(target_pose, vector_direction)
|
|
|
|
def generate_substage(self, gripper2obj, vector_direction):
|
|
vector_direction = vector_direction / np.linalg.norm(vector_direction)
|
|
total_angle = self.joint_position_threshold * (self.joint_upper_limit - self.joint_lower_limit)
|
|
arc_length = abs(self.revolute_radius * total_angle)
|
|
step = int(arc_length / self.DELTA_DISTANCE)
|
|
from pyboot.utils.log import Log
|
|
Log.debug(f'PushRevoluteStage: total_angle={total_angle}, arc_length={arc_length}, step={step}')
|
|
trajectory = self.generate_trajectory(gripper2obj, vector_direction)
|
|
self.save_visualized_gripper_trajectory(trajectory, "push_revolute_traj.txt")
|
|
|
|
self.sub_stages.append([trajectory, None, np.eye(4), 'Trajectory'])
|
|
self.sub_stages.append([None, "open", np.eye(4), 'Simple'])
|
|
|
|
free_delta_pose = np.eye(4)
|
|
free_delta_pose[2,3] = -self.DELTA_DISTANCE
|
|
self.sub_stages.append([free_delta_pose, None, np.eye(4), 'local_gripper'])
|
|
|
|
|
|
|
|
def generate_trajectory(self, gripper2passive_obj, init_vector_direction):
|
|
trajectory = []
|
|
total_angle = self.joint_position_threshold * (self.joint_upper_limit - self.joint_lower_limit)
|
|
total_angle *= self.joint_direction
|
|
|
|
arc_length = abs(self.revolute_radius * total_angle)
|
|
num_steps = int(np.ceil(arc_length / self.DELTA_DISTANCE))
|
|
if num_steps < 1:
|
|
num_steps = 1
|
|
|
|
delta_theta = total_angle / num_steps
|
|
rotation_axis = np.array(self.joint_axis, dtype=float)
|
|
rotation_axis /= np.linalg.norm(rotation_axis)
|
|
|
|
passive_obj_2_root = np.linalg.inv(self.root_obj.obj_pose) @ self.passive_obj.obj_pose
|
|
gripper_2_root = passive_obj_2_root @ gripper2passive_obj
|
|
pos0 = gripper_2_root[:3, 3]
|
|
R0 = gripper_2_root[:3, :3]
|
|
|
|
joint_2_root = np.linalg.inv(self.root_obj.obj_pose) @ self.main_part_obj.obj_pose
|
|
|
|
pivot = joint_2_root[:3, 3]
|
|
|
|
for i in range(1, num_steps + 1):
|
|
angle = i * delta_theta
|
|
R_delta = R.from_rotvec(rotation_axis * angle).as_matrix()
|
|
pos_rot = R_delta @ (pos0 - pivot) + pivot
|
|
R_new = R_delta @ R0
|
|
|
|
waypoint_2_root = np.eye(4)
|
|
waypoint_2_root[:3, :3] = R_new
|
|
waypoint_2_root[:3, 3] = pos_rot
|
|
waypoint_2_obj = np.linalg.inv(passive_obj_2_root) @ waypoint_2_root
|
|
trajectory.append(waypoint_2_obj)
|
|
return np.asarray(trajectory)
|
|
|
|
def save_visualized_gripper_trajectory(self, gripper_trajectory, save_path):
|
|
#import ipdb; ipdb.set_trace()
|
|
N = len(gripper_trajectory)
|
|
gripper_pts = np.zeros((1, 60, 3))
|
|
for i in range(10):
|
|
gripper_pts[0, i] = np.array([0, 0.01, 0.002*i])
|
|
gripper_pts[0, i+10] = np.array([0, 0.01, 0.002*i + 0.001])
|
|
gripper_pts[0, i+20] = np.array([0, -0.01, 0.002*i])
|
|
gripper_pts[0, i+30] = np.array([0, -0.01, 0.002*i + 0.001])
|
|
gripper_pts[0, i+40] = np.array([0, -0.01 + 0.002 * i, 0])
|
|
for i in range(5):
|
|
gripper_pts[0, i+50] = np.array([0, 0, -0.002*i])
|
|
gripper_pts[0, i+55] = np.array([0, 0, -0.002*i + 0.001])
|
|
gripper_pts -= np.array([0, 0, 0.002*10 + 0.001])
|
|
gripper_pts = gripper_pts.repeat(N, axis=0)
|
|
gripper_trajectory = gripper_trajectory.reshape(N, 1, 4, 4)
|
|
gripper_trajectory = gripper_trajectory.repeat(60, axis=1)
|
|
gripper_pts = gripper_pts.reshape(-1, 3)
|
|
gripper_trajectory = gripper_trajectory.reshape(-1, 4, 4)
|
|
gripper_pts_2_obj = (gripper_trajectory[:, :3, :3] @ gripper_pts[..., None]).squeeze(-1)+ gripper_trajectory[:, :3, 3]
|
|
np.savetxt(save_path, gripper_pts_2_obj, fmt="%.6f")
|
|
|
|
def axis_angle_to_matrix(self, axis, angle):
|
|
|
|
axis = axis / np.linalg.norm(axis)
|
|
K = np.array([[0, -axis[2], axis[1]],
|
|
[axis[2], 0, -axis[0]],
|
|
[-axis[1], axis[0], 0]])
|
|
R = np.eye(3) + np.sin(angle) * K + (1 - np.cos(angle)) * (K @ K)
|
|
T = np.eye(4)
|
|
T[:3, :3] = R
|
|
return T
|
|
|
|
def check_completion(self, objects):
|
|
if self.__len__() == 0:
|
|
return True
|
|
|
|
succ = False
|
|
if self.step_id >= 0:
|
|
succ = True
|
|
|
|
if succ:
|
|
self.step_id += 1
|
|
|
|
return succ |